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Introduction

Structure-based drug discovery has played an important role
in medicinal chemistry,1 beginning nearly when the first X-ray
crystal structure of the myoglobin and hemoglobin proteins at

near-atomic resolution were described by Perutz, Kendrew and
colleagues.2-5 Even though only static structures were (and still
generally are) used for most structure-based drug design
(SBDDa) and indeed most molecular modeling, the importance
of flexibility was recognized immediately: hemoglobin has two
rather different structures, “tense” and “relaxed”, depending on
its oxygenation, although in recent years a family of relaxed
hemoglobin structures with different tertiary structure conforma-
tions have been reported.6 In fact, all proteins are inherently
flexible systems. This flexibility is frequently essential for
function (e.g., as in hemoglobin). Proteins have an intrinsic
ability to undergo functionally relevant conformational transi-
tions under native state conditions7,8 on a wide range of scales,
both in time and space.9 In adenylate kinase large conforma-
tional changes due to movements of the nucleotide “lids” (rate-
limiting for overall catalytic turnover10,11) are “linked” with
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relatively small-amplitude atomic fluctuations on the picosecond
time scale such that changes in the local backbone conformation
are required for lid closure.12 Nuclear receptors are modular
proteins where a significant degree of conformational flexibility
is essential to biological function. Most of the pharmacology
of nuclear receptor ligands has been discussed on the basis of
their ability to stabilize (or displace) a short R-helix segment
(known as H12 or AF-2) localized at the carboxy terminus of
the receptor in (or from) its conformation in the protein “active”
form.13-15 Available X-ray crystal structures show a surprisingly
wide range of structural diversity in ligands binding to, and
inhibiting, nuclear receptor proteins such as the farnesoid
X-receptor (FXR).16,17 Protein dynamics is also a key compo-
nent of intramolecular and intermolecular communication/
signaling mechanisms and an essential requirement for the
function of G-protein-coupled receptors (GPCRs), which are
the largest known superfamily of membrane proteins. GPCRs
regulate cell activity by transmitting extracellular signals to the
inside of cells and respond to these signals by catalyzing
nucleotide exchange in intracellular G-proteins.18 Emerging
evidence suggests that these receptors exist as homodimers,
heterodimers, and oligomers19 and act in multicomponent units
comprising a variety of signaling and scaffolding molecules.20

Thus, regulated protein-protein interactions are key features
of GPCR function, and understanding these interactions in the
dynamic cellular environment is a major research goal that may
lead to new therapeutic approaches for this important target
family.

In terms of medicinal chemistry and drug discovery, even
the angiotensin-converting enzyme inhibitor captopril, credited
as the first drug discovered using a protein binding site, binds
to a protein (carboxypeptidase A) that was known to be highly
flexible.21 While most examples of successful modeling and
computational drug design have been accomplished without true
consideration of protein flexibility, this may be largely due to
the fortunate result of relatively minor induced-fit adaptations
of proteins upon ligand binding. Using flexibility as a criterion,
we can classify three types of proteins: (i) “rigid” proteins, where
ligand-induced changes are limited to relatively small side chain
rearrangements, (ii) flexible proteins, where relatively large
movements around “hinge points” or at active site loops, with
concomitant side chain motion, occur upon ligand binding, and
(iii) intrinsically unstable proteins, whose conformation is not
defined until ligand binding. Currently, for technical reasons,
the Protein Data Bank (PDB)22 is artificially enriched in the
first family, but genomic and proteomic projects have shown
that the last two protein classes represent a very significant
proportion of the proteome23 and probably include many
important therapeutic targets. It is also noteworthy that the
steadily increasing availability of experimentally determined (X-
ray/NMR/cryoEM) protein structures has not appeared to have
resulted in a similar increase in the success rate of structure-
based design approaches, although the significant time lag
between availability of a structure and its exploitation may be
masking the true success rate.

These facts clearly suggest that too much emphasis, or
perhaps even hope, has been placed on rigid structures,
regardless of their experimental or theoretical origin, and
especially when dealing with proteins expected or known to
undergo large conformational changes during their biological
function. There are probably two main reasons that this short-
sighted approach has evolved and continued: first, the impact
of the static appearance of X-ray crystal structures (and their
often beautiful images!) on the perception of protein structure,

i.e., that the crystal structure is always the “correct” structure,
and second, the conceptual (and technical) difficulties of dealing
with moving targets. There is one extremely obvious cause of
this rigid “bias”; to reduce disorder and also to preserve precious
crystals, crystallography data are now usually obtained at
extremely low, nonbiological temperatures. Similarly, although
proteins are somewhat solvated in their crystal lattice for
crystallographic analysis, that is likely to be a flawed ap-
proximation of the true biological environment for many, if not
most, proteins. In biological systems proteins express their
functions in aqueous or semifluid environments and proteins in
solution exist as an ensemble of energetically accessible
conformations such that their three-dimensional structure is best
described when all states are represented. For drug discovery,
this is a radical paradigm shift from when captopril was
invented, even if the active site flexibility of carboxypeptidase
A was acknowledged at the time!

Thus, because protein conformational changes are initiated
or stabilized by ligand binding and are essential to the protein’s
own function, the ability to measure or simulate dynamic
changes taking place in proteins upon ligand binding is
becoming a central issue in the design of bioactive compounds.
The essence of the problem for drug discovery is that for a
flexible target it is not known in advance which conformation
the target will adopt in response to the binding of a particular
ligand or how to design such a ligand for an unknown
conformation.

In the fall of 2007 the authors of this Perspective participated
in a course organized at the University of Parma (Italy) entitled
“From Structural Genomics to Drug Discovery: Modeling the
Flexibility” (www.course07.unipr.it). While we approach this
problem from a wide variety of directions, both experimental
and computational, there was a very strong agreement that the
“flexibility era” for drug discovery was rapidly approaching and
that there were a number of points of consensus among the
authors of this contribution on how flexibility could be and
should be exploited for drug discovery.

While techniques such as fluorescence spectroscopy,24 spin
label electron paramagnetic resonance (EPR),25 and small angle
X-ray scattering26 have significant applications in elucidating
some aspects of protein flexibility, X-ray crystallography and
nuclear magnetic resonance (NMR) spectroscopy are the key
technologies for characterizing molecular structure and will be
the focus of this Perspective. As will be described below, these
two tools have been evolving with respect to describing
molecular flexibility. Molecular dynamics (MD) and molecular
docking have developed as separate subdisciplines of computer-
aided molecular design, but at least for the purposes of drug
discovery for flexible targets, these techniques and tools are
complementary (see Figure 1). In this Perspective we will first
describe some of the innovations in both experimental measure-
ment and computational modeling of flexibility that we believe
are going to impact strongly the future success of computer-
aided molecular design. Thus, this Perspective will not exhaus-
tively cover all methodological approaches that can be used to
address the complex issues of protein dynamics but instead
reflects the themes of the course. We are excited about these
prospects and offer some guidelines and forecasts for working
under this new paradigm.

Characterizing Flexibility in Biomacromolecules

High-resolution experimental techniques such as X-ray
crystallography and NMR usually only provide snapshots of
one or just some of the conformations that are accessible to
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proteins. However, synchrotron X-ray sources have recently
opened up the possibility of time-resolved measurements on
single crystals. With the superior resolution of these sources it
is also possible to evaluate the electronic oscillations around
single atoms and obtain the probability density for the atom.
While NMR has a number of limitations, it does have the
seemingly large advantage of being performed under conditions
and in solutions that mimic the biological environment. Gener-
ally the results from NMR are ensembles of low energy
conformations that satisfy the coupling energy constraints
displayed in the multidimensional spectra. Importantly, as the
field strength of NMR spectrometers increases, not only is the
size range of proteins amenable for study increased but the re-
solutions of the spectra are enhanced, leading to the identification
of more conformers. Also, new and more sophisticated NMR
pulse sequences have allowed the extraction of more detailed
3D structural data.

Molecular dynamics simulation is at present the best means
to obtain a more complete set of protein conformers, especially
for those at relatively high energy and not detectable with the
current set of experimental tools. While the starting conforma-
tions for MD are, by necessity, crystallographic, NMR, or
computationally-built models, the resulting trajectories of
conformations or atomic motion can be thought of as “movies”

showing the somewhat random motion of a protein at a given
temperature. Sampling of these conformations can provide a
set of unbiased structures for analysis with docking, virtual
screening, or other computational approaches. However, the
stochastic nature of molecular dynamics, along with the rather
limited time scales of simulations (typically only a few tens of
nanoseconds or less), and the presence of high energetic and
entropic barriers in flexible molecules can render many of the
conformational models uninteresting or redundant because only
a small subset of the available models is obtained.

On the other hand, docking and virtual screening have
progressed from placing rigid ligands into rigid sites in its
earliest incarnations27 to placing flexible ligands in rigid
sites28-31 to the current state-of-the-art of placing flexible ligands
in semiflexible sites.32-38 In all of these cases the initial site
model usually has its origin in experimental structure data. The
challenge for drug discovery, as in docking or virtual screening,
is to model the receptor plasticity that enables binding partners
to conformationally adapt to one another. First, one needs to
understand what can move and how; second, this knowledge
needs to be transformed into a useful and reliable docking
algorithm. The predisposition of proteins to undergo functionally
relevant conformational transitions provides a route to this
requirement, as it implies the pre-existence of conformations

Figure 1. X-ray crystallography, NMR spectroscopy, and computational molecular dynamics. (a) Crystal illustrating the uniformity of the protein
molecular structures within their unit cells necessary for X-ray diffraction. Ordered water molecules (not shown) partially hydrate the structure. (b)
Protein molecule in solution for NMR experiment. Ordered water and other (not shown) ions solvate the structure, but many other solvent molecules
are not structurally ordered. (c) Protein immersed in virtual (water) solvent for computational molecular dynamics with periodic boundary conditions.
(d) Diffraction pattern from an X-ray data collection. (e) Typical 2D NOESY spectrum (http://www.sanger.ac.uk/Users/sgj/thesis/html/node86.html)
from protein NMR. (f) Molecular dynamics potential energy as a function of simulation time for coarse-grained motions. (g) Electron density maps
for histidine and lysine residues. The density around more labile (high B-factor) atoms is either diffuse or nonexistent (e.g., the NZ atom of lysine).
(h) Typical backbone traces for structures meeting constraints determined by NMR NOESY experiments. The high degree of flexibility at either
end of the structure is evident. (i) Protein structure illustrating (see arrows) typical large scale motions that may be observed with computational
molecular dynamics.
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even in the absence of triggering events like ligand binding.
The ligand “selects” the proper conformation from the ensemble
of rapidly interconverting species.7-9 In this approach, com-
putational investigations of conformational fluctuations of
unbound receptors with MD should reveal conformational states
adopted by the analogous bound receptor. Alternatively, the
problem of modeling conformational changes can be simplified
by focusing on what has been learned recently about protein
side chain motions that occur upon natural ligand or inhibitor
binding.39-42 Thus, the active site can be rationally adapted to
the incoming ligand, i.e., by “induced fit”, which may also take
advantage of low-energy conformational changes. The opposite
can also be true: consider that the “soaking” method of inserting
ligands into preformed protein crystal lattices to form crystals
of the complex, which works for some but certainly not all cases,
suggests that static lattices may, in fact, select ligands.

X-ray Crystallography

X-ray crystallography is generally considered the gold
standard technique in producing experimental structural models
of biological macromolecules. In quantitative terms (i.e., the
number of structures deposited at the Protein Data Bank) X-ray
crystallography has been the most productive structure elucida-
tion tool for biomacromolecules. Indeed, a highly detailed
picture emerges from X-ray diffraction analysis of a crystal that
contains an active biomacromolecule. The standard use of
macromolecular crystallography results in a static-, time-, and
space-averaged structure that unfortunately only poorly repre-
sents the ensemble of conformations of the protein in action.
Part of this may be attributed to crystallization being a
“purification” in that only molecules with conformations
compatible with the growing crystal lattice will be “frozen”.
The accuracy of a static crystal structure is defined by the
resolution to which X-ray data have been measured. Numerous
experimental factors contribute to the observed resolution, some
related to the size and quality of the crystal itself, others to the
brightness of the X-ray source employed and to experimental
conditions.

While X-ray diffraction is probing electron density, neutron
diffraction (available from nuclear reactor or spallation sources)
probes the atomic nuclei and can thus experimentally locate
hydrogen positions because of inherently high resolution; the
downside is that rather large crystals are required. Typically, a
resolution of less than 2 Å is generally considered good
crystallographic data for a protein structure, while a resolution
of around 1 Å is termed “atomic”. Another set of quality metrics
for crystallography, the R-factor or free R-factor, are measures
of how well the refined structure fits the observed data or, in
other words, the percentage difference between the measured
electron density and that of the refined model.43 Finally, each
atom in a reported crystal structure will have a B-factor (or
temperature factor) that in its most basic sense represents the
atom’s individual uncertainty in position, whether due to thermal
motion, occupancy, experimental and modeling artifacts, or other
effects.44

In recent years however, mainly because of the availability
of powerful synchrotron X-ray sources, several new approaches
have been developed that go beyond the classical static
crystallographic analysis. Two major contributions can be
attributed to these advances: (i) time-resolved measurements
either on a series of crystals or using Laue diffraction for fast
data collection can detect transient chemical states in the crystal;
(ii) it is possible to more precisely evaluate the oscillations of
an atom around its position, thereby providing information on

the dynamic properties of a protein in a crystal lattice. The latter
approach is based on the modeling of an atomic displacement
parameter, i.e., the thermal parameter or B-factor described
above, which can be thought of as a probability density function
for the location of each atom in the protein. At low resolution,
modeling of this parameter is restricted to a spherical or
“isotropic” shape, but at atomic resolution, an ellipsoid or
“anisotropic” model can be applied.45,46 This anisotropic model
provides both the magnitudes and directions of movement of
each atom and its inclusion in a model determined at high
resolution allows a dynamic description of the protein structure.
Thus, at atomic resolution, analysis of the anisotropic thermal
parameters allows extraction of the direction of motion, possibly
leading to better detection of both subtle changes and larger
scale motions (see ref 47 and references therein). Figure 2
illustrates the high resolution (1.05 Å) X-ray crystal structure
for Mycobacterium tuberculosis FprA,48 which was solved with
anisotropic thermal parameters, and revealed an unexpected
chemical conversion of NADP+ to NADPO.

The dynamics of a biological system or process can be
reconstructed in the form of a “movie” prepared by assembling
a series of static structures corresponding to various states along
a reaction pathway. Such an approach has been employed to
visualize transitions from one type of folding motif to another,
conformational changes associated with different types of ligand-
induced structural adaptations, alternate motions between well-
defined distinct conformations, changes in quaternary structure,
subtle side chain movements in the interior or on the surface of
a protein, and other structural rearrangements.49 By exploitation
of synchrotron radiation and a multiwavelength data collection
technique known as the Laue method, “kinetic crystallography”
can be performed to obtain the necessary set of static structures
on relevant reaction pathways. When biological turnover is
initiated in the crystal with light or other radiation, the formed
transient structural species can be seen together with the
associated structural rearrangements (see refs 50 and 51 and
references therein). Although movements occurring on a time
scale that is faster than the time required to determine the
structure by X-ray crystallography cannot be detected, time-
resolved crystallography, when experimentally feasible, can
provide an important contribution in describing protein flex-
ibility. There is an ever-increasing synergy between kinetic

Figure 2. View of the active site of Mycobacterium tuberculosis FprA.
The FAD cofactor and a covalently modified NADP+ (labeled NADPO)
identified in the 1.05 Å resolution crystal structure (PDB code 1LQT)
are highlighted.48 Shown in blue is the 2Fo - Fc map contoured at the
level of 2σ above its mean. Figure was prepared using PyMOL.168
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crystallography and in crystallo UV/visible absorption and
fluorescence, fluorescence lifetime, and Raman spectroscopies,
in combination with various evolving physical trapping (e.g.,
temperature) and chemical trapping (e.g., adjusting solvent, pH,
etc. to manipulate concentrations of chemical intermediates)
strategies. These and other combinations of methods will be
increasingly employed in the future to provide a dynamic view
of biological processes carried out by proteins and to give insight
on how to influence these processes with chemical agents.
Indeed, a stunning example was published very recently on
superoxide reductase, an iron containing enzyme that neutralizes
the highly cytotoxic superoxide radical produced by oxygen
metabolism.52 By combining kinetic crystallography with Raman
spectroscopy, the authors have been able to film the enzyme in
action,53 thus providing an invaluable contribution for the
understanding of its catalytic mechanism at the molecular level.

Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance spectroscopy is an alternative
method used to determine the three-dimensional structure of
proteins. In contrast to crystallography, NMR experiments are
performed in solution and thus can allow direct observation of
the physical flexibility and the dynamics of their interactions
with other molecules. Also, in contrast to X-ray crystallography,
NMR studies of biomacromolecules provide an ensemble of
low-energy conformations of the molecule that satisfy specific
geometric criteria determined by the experimental protocol.
While each conformation alone can be thought of as a static
snapshot of the molecule, together they provide a dynamic
representation of the protein. To obtain structural data for
biological-scale molecules, multidimensional multinuclear NMR
is used where the off-axis cross peaks encode information
regarding the interaction between nuclei in the molecule, which
in turn relates to the distances between atoms. It is key to extract
as much information as possible about these interatomic
distances; thus, each peak must be assigned to its particular
nucleus in the biomolecule. Spectral analysis is primarily
focused on the association of the position of the individual NMR
lines in the spectrum (chemical shift) to a specific nucleus (1H,
15N, or 13C) of the protein. Although the chemical shift for an
atom is primarily determined by the atomic connectivity of the
amino acid residue, it can also be affected by the interactions
with the solvent and by the involvement of that residue in the
protein’s secondary and/or tertiary structure. Various strategies
of applying pulse sequences, magnetization transfer, and isotopic
labeling (15N and 13C) are employed to resolve the peak
assignments. As a result of dramatic advances of the technique,
in terms of both hardware and software, the range of protein
size amenable for NMR structure solution has been significantly
extended to 80-100 kDa.54,55 High resolution structure solutions
of proteins embedded in membrane systems have also become
possible.56 Recently, a new method of determining the structure
of complexes in solution based on the changes in chemical shift
that occur when a ligand binds to a receptor has been
described.57

The strategy used to derive 3D structure from NMR data is
to start with a randomly folded structure derived from the
primary sequence. Then the structure is optimized using either
a molecular dynamics/simulated annealing protocol or distance
geometry against the NMR-derived distance and torsion angle
data (restraints) combined with empirical data (e.g., known bond
lengths and angles) to reach a minimum potential energy. In
general, there will be a family of structures satisfying the NMR
constraints. Interestingly, the rmsd (root-mean-squared deviation

from the minimum energy structure) turns out to be different
for different regions in the structure. For example, flexible
regions without secondary structure, e.g., loops, show a
relatively larger deviation because these regions have fewer
constraints.

Protein functionality can usually be associated with backbone
and side chain dynamics. Figure 3 illustrates backbone dynamics
data derived from 15N-1H NMR experiments on mutant
Sm14-M20(C62V),58,59 a fatty acid binding protein found in
Schistosoma mansoni. S. mansoni is a significant parasite of
humans and one of the major agents of schistosomiasis. These
data show a direct correlation between the decrease of the
protein flexibility, mainly in the loop regions, and ligand binding.
There are larger differences in the NMR-derived generalized
order parameter S2 between the apo and holo forms of the
protein in these regions and near the residues involved in binding
(see Figure 3).60 It is worth emphasizing that protein movements
span a broad range of time scales and NMR is the only currently
available technique that can monitor and discriminate these
molecular processes. Nuclear spin relaxation rate measurements
report on fast (<ns) and slow (µs to ms) internal motions and
can allow unraveling of the intermingled effects of static
disorder, coherent intramolecular motions, and chemical ex-
change processes but can also determine molecular rotational
diffusion (5-50 ns). The determination of the rates of magne-
tization transfer among protons with different chemical shifts
and of proton/deuterium exchange, instead, reports on very slow
movements of protein domains (ms to days) and provides insight
into conformational exchange processes.61 On the basis of the
results obtained from these NMR experiments, it is possible to
characterize both the thermodynamic and kinetic features of
interactions with other molecules (either macromolecules or low
molecular weight ligands). Eisenmesser et al.62 demonstrated
that dynamics can be monitored during enzyme catalysis at
multiple sites by means of newly reported NMR relaxation

Figure 3. Backbone dynamics data derived from 15N-1H NMR
experiments on mutant Sm14-M20(C62V). The NMR-derived backbone
traces for both apo and holo protein forms are shown on top, with the
bound fatty acid shown in yellow (in the holo form). The order
parameters S2 as function of residue number are shown in the bottom
graph for apo (cyan) and holo (magenta). The red bars along the residue
axis indicate the loop regions of the protein, where a larger difference
in S2 between the two forms is observed.
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dispersion experiments that probe molecular motions in the µs
to ms time scale with higher sensitivity than other relaxation
experiments.63 By use of this technique, the motions in free
cyclophilin A were compared with those during turnover; this
comparison showed that the motions are collective, propagating
from the active site to remote sites.

Some proteins, such as partially folded polypeptide chains,
are difficult to crystallize, and even if crystals can be obtained,
the chain segments that are disordered in solution either will
be ordered by intermolecular contacts in the crystal lattice or
will remain disordered in the crystal. In these cases, NMR is
capable of providing structural information and an indication
of the rate of the processes that mediate the transitions between
the discrete structured states present in the conformational space
spanned by the ensemble of NMR conformers.64

While there are intrinsic experimental difficulties and limita-
tions with NMR structure determination, its ability to reveal
flexibility and the fact that it is obtained in solution at conditions
more similar to the conditions in vivo, where biomolecules are
active, are compelling. Damm and Carlson65 showed, in a
comparison between 28 NMR structures and 90 crystal struc-
tures of HIV-1 protease using a method termed multiple protein
structure (MPS), that NMR-MPS is better able to represent
protein flexibility because the ensemble of NMR-derived
conformers possesses a greater structural variation.

Computational Molecular Dynamics

The experimental data derived from X-ray crystallography
and nuclear magnetic resonance provide a framework for
understanding the structure and flexibility of proteins and other
biomacromolecules but cannot illuminate all of the details of
the motions that these molecules undergo. As stated above, only
relatively long-lived and more populated (i.e., lower energy)
states will be observed and recorded by these methods. It is
not unlikely that some ligands may bind to and stabilize higher
energy states that are, for example, transitional between lower
energy conformations. In addition, several experimental limits,
i.e., protein molecular weight, protein solubility, time required
for the analyses, crystallization difficulties, etc., affect either or
both of these experimental techniques and prevent them from
being applicable to all biomacromolecules of interest. In
particular, the membrane-bound proteins, e.g., G-protein-coupled
receptors, have proven very difficult to crystallize for examina-
tion by X-ray crystallography and are often too insoluble for
NMR analysis (vide infra). Computational approaches, and in
particular, molecular dynamics (MD), can generate large
numbers of protein conformations to be used in docking analyses
and virtual screening experiments.66,67 The impact of flexibility
on docking will be discussed in the next section, but it is clear
that just considering ligand or protein side chain flexibility may
be inadequate for some (or many) cases and that coupling
molecular dynamics with docking in some manner is better able
to represent the accessible conformational space.68-71

Molecular dynamics approaches are often characterized by
scale, depending on the nature and size of the system to be
analyzed, with reference to the ubiquitous compromise between
speed and accuracy (or level of detail). Both coarse-grained and
atom-level simulations will be discussed below, followed by a
description of a relevant and current problem in drug discovery
requiring multiscale MD analysis. Figure 4 illustrates for the
estrogen receptor R (ERR) how more than one of these scales
can be relevant within the same modeling system. We must
acknowledge a key technological advance that underlies all
aspects of this research, but particularly MD. It is interesting to

note that the first MD simulation of a biomolecule is usually
attributed to McCammon, Gelin, and Karplus who generated a
9 ps trajectory of the bovine pancreatic trypsine inhibitor protein
(886 atoms) in 1977.72 Recently, a 50 ns dynamics simulation
of an entire virus containing one million atoms was reported.73

In simple terms this is about a 107-fold performance increase
in about 30 years due to advances in parallel computer
architectures coupled with algorithms and software able to
exploit them efficiently. This trend is expected to continue for
the foreseeable future.

Coarse-Grained Approaches. Coarse-grained models, where
some of the fine atomistic details are usually smoothed over or
averaged out, were developed for investigating longer time-
scale dynamics. Information on general protein flexibility can
be obtained by using simple normal-mode analysis with simple
Hooke’s-law-like potentials as shown in eq 1, where it is
assumed that biologically important deformations (including
those resulting from ligand binding) follow one or several of
the natural deformation modes of the protein:

E)∑
i, j

kd(dij - dij
0)2 (1)

where kd is a distance-dependent (or distant-independent) force
constant, dij is the distance between residues i and j, and dij

0 is
the distance between residues i and j in the experimental
structure. Potentials similar to those in eq 1 can be easily

Figure 4. Examples of large motions (coarse-grained) and small
motions in the estrogen receptor R protein. (a) Different positions of
helix 12 (red) depending of the type of bound ligand (green). Agonists
such as estradiol induce and stabilize the closed conformation (left),
while antagonists such as tamoxifen prevent helix 12 from adopting
the agonist-induced conformation (right). (b) Small adjustments of the
His524 residue within the ERR binding site depending on the ligand.
Yellow bonds indicate the positions of His524 when the natural ligand
estradiol (also yellow) is bound. Light-blue bonds illustrate the
antitumor drug raloxifen and its effect on His524. Dark-blue bonds
represent the drug tamoxifen and its effect on His524.
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implemented into Brownian dynamics algorithms, which present
several advantages with respect to normal-mode analysis. For
example, (i) the effects of time can be incorporated; (ii) several
protein molecules can be considered simultaneously, opening
the possibility of studying flexibility related to protein-protein
interactions; (iii) ligand-protein interactions can be generated
during the trajectory; and (iv) solvent effects can be introduced
by adding suitable residue-based potentials. An alternative to
Brownian dynamics is discrete dynamics, where harmonic
potentials are replaced by square wells delimited by finite or
infinite energy walls. The advantage of discrete dynamics is
that no integrations of Newton’s equations of motions are
required, since the residues move in a space of constant velocity
until they hit an energy wall, at which time an elastic collision
is assumed.

While the coarse-grained dynamic techniques can provide
surprisingly accurate information on general protein dynamics,
including deformation leading to the formation or reshaping of
binding pockets, the finer details are lost, which can lead to
erroneous results when the resulting models are used as targets
in structure based drug discovery.

Atomic-Level Molecular Dynamics. Atomic-level-of-detail
molecular dynamics simulations allow the simultaneous repre-
sentation of both small atomic fluctuations and large protein
movements. The main limitation of this technique is its
computational cost, which has limited its general application.
A critical issue in this approach is the extent to which the MD
simulation is able to sample the conformational states accessible
to the protein (or protein/ligand complex). Indeed, despite vast
improvements in computer power (and the parallelization of
many MD codes), most of the published MD simulations are
still limited to just a few ns, where the probability of sampling
multiple biologically significant minima is rather low. The true
extent of the achieved sampling should be evaluated in this case.
Several computationally inexpensive techniques can be em-
ployed once the MD trajectories have been collected. For
example, essential dynamics allows filtering of noise from
essential motions, and cosine analysis of the eigenvectors may
allow estimation of the separation of “real” motions from
random diffusion. Even simpler is comparing the experimentally
obtained crystallographic B-factors (vide supra) with the rmsd
fluctuation per residue as extracted from the MD trajectory. A
qualitative correlation between B-factors and rmsd fluctuation
is a sign that the MD simulation has only wandered around the
crystallographic minimum and not effectively sampled confor-
mational space. In other words, the MD is producing little more
than “wiggles” and not generating new energetically accessible
conformations that can be used as targets for docking or virtual
screening.

The very clear necessity of documenting protein flexibility
and the reliability of MD simulations has recently resulted in
the MODEL (molecular dynamics extended library, http://
mmb.pcb.ub.es/MODEL) project. MODEL is a massive plan
to provide the community with a database of protein flexibility
covering all unique proteins in the PDB. At present it contains
information (∼10 ns simulation time) on the dynamics behavior
in water for around 1500 proteins, covering most of cluster-90
in the PDB; i.e., it is representative of all structurally known
proteins. The MODEL relational database contains more than
12 terabytes of data and provides atomic-level-of-detail sam-
plings, usable to improve ligand docking, to analyze the
existence of hinge points, to study ligand diffusion to binding
sites, and to predict potential deformation movements that can
alter the protein structure. MODEL is now being extended to

cover protein-protein complexes and to analyze ligand-induced
changes in structure and dynamics for a subset of proteins for
which both bound and unbound structures are known. This
project has only been possible with the newest generation of
supercomputers and enhancements in MD algorithms that can
now produce state-of-the-art trajectories approaching biologi-
cally relevant time scales (µs to 1 ms). In fact, systematic
analysis of the dynamics of the entire proteome is now possible.
For applications in rational drug design, the accessibility of an
ensemble of structures for a given protein instead of only a single
conformer multiplies the possibility of success in docking and
virtual screening procedures.

Ensemble docking (vide infra) employs a small number of
carefully chosen receptor conformations, obtained from X-ray,
NMR, or MD simulations. The goal is to increase the probability
that the ligand will dock, because there are multiple, hopefully
somewhat diverse, targets. While experimental conformations from
multiple X-ray or NMR derived structures would be most desirable,
molecular dynamics simulations are more accessible for most
proteins and can generate protein “receptor ensembles” adequate
for docking ligands for lead discovery or refinement.67 Ensemble
docking will be a topic for the next section, but there are a few
MD considerations that should be addressed here. First, the extent
of diversity in conformations required for successful docking may
be modest as long as a number of distinct conformational states
are generated. The results thus obtained, however, must not be
overinterpreted, especially if ligands with significantly different
profiles are studied, and significant conformational changes are
expected to take place. In this case, the extent of the achieved
sampling should definitely be evaluated. A second potential element
of bias may be due to the conditions under which the MD
simulations are carried out. For example, an ensemble docking
carried out on snapshots of an MD simulation of a protein
complexed with a given chemotype will more favorably score
ligands structurally related to that chemotype compared to those
of other chemotypes. This same bias also applies to experimentally
determined conformations, again suggesting caution that the results
not be overinterpreted.

Multiscale MD Simulations: G-Protein-Coupled Recep-
tors. Multiscale simulations, i.e., involving both coarse-grained
and atomic level-of-detail molecular dynamics, are virtually the
only way for structurally investigating the biological properties,
function, and molecular interactions of signaling proteins like
GPCRs for which experimental structural data are not available.
Here, GPCRs will be used to illustrate the vital structural and
functional information that can be obtained when applying MD
simulations. GPCRs are allosteric proteins that transform
extracellular signals into promotion of nucleotide exchange in
intracellular G proteins. As such, they are composed of regions
of high stability (low flexibility) and regions of low stability
(high flexibility) that communicate with each other by transmit-
ting signals between the extracellular region and the distal
intracellular region. GPCRs exist as complex statistical con-
formation ensembles.66,74-76 Their functional properties are
related to the distribution of states within the native ensemble,
which is differently affected by ligands, interacting proteins,
the lipid membrane environment, and/or amino acid muta-
tions.66,74,77 Thus computational modeling of GPCR function
requires effective integration of supramolecular modeling and
multiscale simulations.

Difficulties in understanding GPCR mechanisms of function
are perhaps primarily due to the lack of high resolution structural
information on these proteins. The data currently available are
for rhodopsin, the cornerstone of family A GPCRs in its dark
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(inactive) state,78 and the human �2-adrenergic receptor-T4
lysozyme fusion protein (at 2.4 Å resolution) bound to the partial
inverse agonist carazolol.79,80 These structural models, especially
rhodopsin, are suitable templates for comparative modeling of
the many homologous receptors.66 Additionally, the structural
model of a photoactivated deprotonated intermediate of bovine
rhodopsin, reminiscent of metarhodopsin II (MII) (PDB code
2I37, 4.15 Å resolution),81 has been recently released. Interest-
ingly, this structure revealed unexpected structural similarities
between the dark and photoactivated structures, in contrast to
earlier predictions of large activation-associated conformational
rearrangements.81

Much effort has been applied in the past decade or so in
elaborating a computational strategy to infer the mechanisms
of intra- and intermolecular communication in GPCRs of the
rhodopsin family.66,82 The computational approach consists of
comparative or ab initio modeling, ligand-protein and pro-
tein-protein docking followed by comparative MD simulations
and analyses. Extensive MD analyses are instrumental in
inferring the most significant structural features that make the
difference between free and bound states of the proteins.
Reducing the system’s degrees of freedom by employing
implicit membrane models and intrahelix distance restraints
facilitates detection of the essential motions or structural changes
that may correlate with receptor and G protein functionality.
Potential mechanisms of ligand- or mutation-induced receptor
activation and of receptor-induced guanosine diphosphate (GDP)
release from the G protein can be obtained by comparing MD-
generated average structures that are representative of different
receptor and G protein states.

MD simulations of the communication between the sites of
activating/inactivating mutations or of ligand binding and the
putative G-protein-coupling domains in members of the glycopro-
tein receptor subfamily,66,82-84 as well as receptors for seroto-
nin,85 melanine-concentrating hormone,86 and thromboxane A2
(TXA2),87 suggest that activating ligands (agonists) or mutations
communicate with a distal cytosolic receptor domain near the highly
conserved “E/DRY” motif by inducing a perturbation in the
interaction pattern of the E/DRY arginine. This increases the solvent
accessibility of some amino acids compared to that in inactive
forms.66,82,83,87 This communication is two-way in the sense that
perturbation in the cytosolic domains can also be associated with

structural changes in the extracellular receptor portions at the
agonist binding site. This has been demonstrated for the κ opioid
receptor.88 Likewise, activating mutations in different sites of the
receptor helix bundle have the same effect.66,82-84 In spite of the
tremendous structural diversity of the different GPCR agonists, a
few critical interactions appear to be needed for activating ligands
in establishing proper communication with the G protein coupling
domains.66,82,85,87 The role of ligand binding, independent of its
activating or inhibitory effect, does not appear to be limited to
conformation selection but instead promotes new conformational
states unlikely to be explored by the unbound receptor forms.66,82,85,87

Developing an understanding of this complex and dynamic
interplay will ultimately lead to improved design criteria for drugs
targeting a wide range of disease states involving GPCRs.

In a recent study of the TXA2 receptor, the increase in solvent
accessibility around the E/DRY receptor motif in response to
agonist binding appeared to favor the docking of the C-terminus
of the GqR subunit of the G protein between the cytosolic ends
of selected receptor helices.87 The establishment of interactions
between agonist-bound receptor and G protein is, in turn,
instrumental in favoring the formation of a GDP exit route
between selected portions of the R-helical and Ras (GTPase)-
like domains (Figure 5).87 This is the first example in which
comparative MD analyses highlighted the potential players in
the communication between the binding site of the receptor
agonist and that of GDP, which are almost 70 Å apart.87

Practical Considerations in Applying MD. Molecular
dynamics seems to represent the most affordable and accessible
method to produce many protein conformations at reasonable
cost. Indeed, thanks to the availability of software and adequate
hardware, MD has become a very popular tool for SBDD and
other modeling tasks. It may even seem that MD is being
overutilized when it is applied to problems where simple energy
minimizations would suffice for structure optimization. Impor-
tantly, the setup of MD simulations is certainly far from trivial,
as is the interpretation of results.89 There are a number of issues
related to widespread usage of molecular dynamics that should
be briefly described here as a caution to the casual MD user.
As mentioned above, MD remains an expert system; medicinal
chemists and other nonspecialists should not view the computers
or MD software as the legendary “black box”.

Figure 5. Average minimized structures of (a) free and (b) TXA2-bound heterotrimeric Gq.80 TXA2 and the G protein R-, �-, and γ-subunits are,
respectively, colored in green, gray, violet, and magenta. The GDP molecule is colored by atom type. Red dots indicate the solvent accessible
surface of GDP, which is exposed to solvent upon receptor binding.80 Only the intracellular half of the receptor is shown.
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First, MD simulations are often referred to as “computer
experiments” and should be regarded as such. Second, the lack
of standards in file formats for structures, force fields, and
trajectories is a major stumbling block to universal acceptance
of the technology. Third, MD simulations of proteins or other
biomolecules require many conformational degrees of freedom,
which is further complicated when the environment of the
molecules, e.g., solvent or membrane, is also modeled. Fourth,
and this is of particular interest for application to docking to
relevant target structures, there are technical difficulties in
accurately sampling the conformational space of large macro-
molecules where the energetic and entropic barriers are high
with respect to the thermal energy at physiological temperatures.
Fifth, it is not obvious to the nonexpert which force field and/
or MD program should be used for a particular system.
Commonly used force field families include AMBER,90

CHARMM,91 GROMOS,92 and OPLS.93 While studies have
shown that in most cases all these force fields give qualitatively
the same results, there can be subtle differences, and they are
all approximations to the real potential energy surface. Common
MD programs for simulating biomolecules include CHARMM,91

AMBER,90 GROMACS,94 and NAMD.95 The factors that
determine the choice of the program include the force field
compatibility and also the operation of the code on the particular
computer hardware. Two aspects of an MD program’s suitability
for a hardware configuration are considered: the “performance”
and the “parallel scalability”. The first is measured in terms of
picoseconds of simulation time per day on a single processor,
while the second is a function of the number of computing nodes
or processors allocated, normally expressed as “speedup”, which
is the ratio of the performance for N processors with respect to
that for one processor. Most MD programs show good parallel
scalability only up to a certain number of processors, after which
communication costs between nodes begin to degrade perfor-
mance. GROMACS often is cited with the best performance
for small numbers of nodes, while NAMD currently appears to
have the best scalability and is more suitable for systems with
many processors. Lastly, it is not just total CPU time that should
be considered in MD but also the “global elapsed time” that is
“real” time used before final results are obtained.

Molecular Docking and Virtual Screening

There are many aspects of molecular docking and its
variations like virtual screening that deserve significant attention
with respect to the evolution of SBDD, but most are beyond
the scope of this Perspective and have been discussed
elsewhere.96-99 In particular, scoring function development, e.g.,
consensus methods,100-102 QM/MM-based free energy perturba-
tion methods that include high quality quantum-derived param-
eters for novel small molecules, as well as desolvation
terms,103-107 or empirical free energy functions,108-111 has
received recent attention. Here, while acknowledging the critical
future role for better scoring functions, we are focusing on the
interface between docking and flexibility.

It is well-accepted that proteins and in particular their active
sites do not exist in single frozen conformations, perfectly
sculpted to the shape of the incoming ligand. As described
above, the beauty of X-ray crystal structures belies the
uncertainties in both the technique and the molecular structure
itself. However, despite this knowledge, docking experiments
often begin with the false assumption that the protein can be
represented by a single structure. This assumption can remain
successful when there is no significant induced fit structural
rearrangements upon ligand binding30 (or when the active site

has been preformed to recognize a particular class of ligands).
Nonetheless, much effort over the past several years has been
expended in developing new algorithms and docking programs
that allow flexibility in fitting and scoring flexible ligands or
ligand candidates in flexible binding sites. The first and
considerably less time-consuming approaches included protein
flexibility in docking experiments by simulating the possible
movements of active site side chains; e.g., version 4 of the
popular program AutoDock29-31 introduced the ability to include
explicit protein side chain flexibility.34,112 GOLD uses a similar
approach by allowing a limited number of protein side chains
to sample alternative rotameric conformations37 and also rotating
terminal hydrogen atoms to optimize hydrogen-bond interac-
tions. FlexE selects from alternative side chain conformations
observed in other crystallographic structures to model flex-
ibility.32 SLIDE uses mean-field optimization to rotate protein
or ligand side groups sufficiently to remove intermolecular van
der Waals overlaps while docking.40 Other approaches involve
constrained geometric simulations,113 invoking elasticity net-
work theory,114,115 or ensemble docking to structure families
arising from dynamics, rotamer libraries, NMR, or X-ray
crystallography,33,35,116-120 Monte Carlo methods,121protein
structure prediction techniques,122,123 or virtual alanine scanning
and refinement.124 DOCK3.5.5438 evaluates complementarity
of “components” or independently moving regions of the
receptor. These components in combination give rise to a
comprehensive ensemble of receptor conformations, yet the
algorithm scales linearly with respect to the receptor’s degrees
of freedom. Other approaches use MD to effectively optimize
the docked solutions obtained from rigid-receptor docking
experiments in a postprocessing step.125 Finally, an algorithm
employing “flexibility trees” has been recently described.126 This
approach greatly reduces the computational overhead for
modeling receptor flexibility during docking.

Side Chain Flexibility. Kuhn and co-workers demonstrated
the importance of including local flexibility with a study that
docked the bound conformation of a series of known ligands
to the ligand-free (unbiased) protein conformations. Only 9 out
of 42 known thrombin ligands and 9 out of 15 glutathione
S-transferase (GST) ligands could be docked without steric
clashes when side chain flexibility was neglected.40 However,
90% of the same ligands could be docked within 1.3 Å rmsd of
the correct atom positions, on average, when small-scale side
chain flexibility was modeled using the docking and screening
tool SLIDE.127 Beyond the necessity of modeling flexibility to
capture known inhibitors or substrates in protein complexes,
accurate sampling of low-energy protein conformers allows these
structures to be used as alternative targets for inhibitor design
and screening.

Fortunately, the challenge of flexibility modeling is simplified
enormously by the fact that most protein side chains undergo
only small motions during ligand binding. In a further study of
63 protein-ligand crystallographic complexes, 83% of all
active-site side chain bonds that rotated in 32 thrombin-ligand
complexes were observed to rotate 15° or less relative to the
ligand-free structure. The same was true for 91% of the GST
side chain rotations in 13 complexes and 75% of side chain
rotations in 18 other, nonhomologous complexes.40 This is
consistent with the finding that ligand binding often induces
strain or nonrotamericity in side chains.128 The dominance of
small side chain rotations is very good news because relatively
simple energy minimization or steric optimization procedures
are often sufficient to model them.129,130
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Why do active-site side chains typically move so little upon
ligand binding? Studies performed on 30 low-homology protein
complexes and on the corresponding ligand-free structures
indicated that preservation of direct intraprotein hydrogen bonds
is the main reason (see Figure 6a).131 About 75% of all
intraprotein hydrogen bonds in these sites are preserved upon
ligand binding, and the percentage of main-chain hydrogen
bonds preserved is even higher (typically 85-100%), as
indicated by the values for Ala, Ile, Gly, and other residues
lacking side chain hydrogen-bonding groups. However, the
picture reverses when water-mediated hydrogen bonds in ligand-
binding sites are considered: from the same 30 pairs of ligand-
bound and free structures (Figure 6b) 50-80% of water-
mediated intraprotein hydrogen bonds are observed to break
upon ligand binding.131 Thus, ligand-binding sites can be
considered to be partitioned into preorganized regions consisting
of directly hydrogen-bonded groups within the protein, and other
regions that are readily reorganized because of the plasticity of
their water-mediated hydrogen bonds. This allows a simplifying
divide-and-conquer strategy in which most of the flexibility
sampling effort in ligand binding sites can be focused on the
hydrogen bonding groups that are not yet satisfied by intramo-
lecular hydrogen bonds, exposure to solvent, or interaction with
the ligand.

Elastic Network Models and Constrained Geometric
Simulations. While molecular dynamics and related modeling
approaches are suitable for investigating subtle movements and
conformational substates, larger conformational changes are not
usually observed in the simulations unless particularly long time
scales are studied. Proteins are often able and required to
undergo significant movements to carry out their catalytic
activity or to interact with ligands and/or other macromolecules
such as been demonstrated by ion channels, allosteric proteins,
or heat shock proteins.132-134 In order to reproduce these
significant conformational adjustments starting from unbound
receptor structures, Gohlke and co-workers developed a two-
step method based on recent developments in rigidity and elastic
network theory.135 In the first step, static properties of the
macromolecule are determined by decomposing the molecule
into rigid clusters using the graph-theoretical approach
FIRST.136 In the second step, the dynamic properties of the
biomolecule are revealed by the rotations-translations of blocks
approach137 using an elastic network model representation of
the coarse-grained protein.138 On a data set of 10 proteins that
show conformational changes upon ligand binding, the predicted
directions and magnitudes of motions were shown to agree well
with experimental observations, demonstrating that the motions
presumed to be “ligand-induced” are already well-defined in
the unbound receptor structure.

Although the constantly increasing availability of computa-
tional resources has mitigated this issue somewhat, MD is still
extremely computationally expensive. The technology is also
an expert system that is neither simple nor obvious in its
application and sometimes prone to convergence problems.
Computational time can be significantly reduced by performing
constrained geometric simulations that use an efficient algorithm
able to reproduce the motion of flexible and rigid parts by ghost
template rearrangements.139 The associated program, FRO-
DA,139 also uses natural coarse-graining for the treatment of
rigid regions identified by FIRST.136 When applied to the
protein-protein interface of interleukin-2, FRODA highlighted
transient pocket formation in agreement with experiments140 and
more elaborate MD studies (see Figure 7). In fact, when
simulations were started from the unbound state, interface

configurations were sampled by both methods that came as close
as 1.0 Å rmsd to the bound conformation. These results strongly
support the “conformation selection” model,7 and the configura-
tions may well be used in subsequent flexible docking approaches.

Figure 6. (a) Direct intraprotein hydrogen bonds tend to be preserved
upon ligand binding. Ligand-free and ligand-bound crystal structures
for 32 proteins with low pairwise sequence identity (<30%) were
analyzed. The percentage of direct, intraprotein hydrogen bonds
preserved upon ligand binding (red) is compared with the percentage
broken (green) for each residue type, including main-chain and side
chain hydrogen bonds. Typically 75% or more of direct hydrogen bonds
are preserved. (b) Intraprotein water-mediated hydrogen bonds tend to
break upon ligand binding. Analysis was performed for intraprotein
hydrogen bonds mediated by one water molecule. The trend is opposite
to that found for direct hydrogen bonds; 50-80% of water-mediated
hydrogen bonds are broken upon ligand binding. Details are as follows:
All residues containing an atom e4 Å from the ligand (in the ligand-
bound structure or e4 Å from the ligand superimposed into the ligand-
free structure) or within 4 Å of a water molecule bridging between the
protein and ligand were kept for analysis. Intraprotein hydrogen bonds
were initially identified as having a donor-acceptor distance of e3.6
Å, hydrogen-acceptor distance of e2.6 Å, and donor-H-acceptor
angle of 90-180°. This set was screened by a hydrogen bond energy
function169 evaluating detailed atom chemistry-dependent features to
ensure that very weak hydrogen bonds were excluded. A total of 60 of
the 64 structures had resolution of 2.2 Å or better, and the remaining
4 had resolution of e2.6 Å.
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A number of docking programs, like AutoDock, use grid
maps to represent the three-dimensional patterns of atomic
affinity, electrostatic potential, desolvation free energy, etc.
around the target molecule. These programs perform an
interpolation for each atom in the ligand to estimate its
interaction energy with the target, generally assuming the target
is rigid. Some slight conformational flexibility in the target can
be added by allowing some overlap in the radii of the grid points.
However, a more sophisticated and novel paradigm for fully
flexible protein-ligand docking can be proposed, based on an
elastic representation of potential grids in the binding pocket
region of a receptor (Kazemi, Krüger, and Gohlke, unpublished
results). Protein conformations can be sampled during docking
without the need to recalculate potential grids. Instead, grid

points are moved along with the binding pocket region according
to the laws of elasticity. This approach was tested on a
comprehensive data set of protein targets representing different
classes of conformational changes during ligand binding.
Notably, compared to docking to the apo conformation of the
proteins, ligand binding mode predictions were greatly improved
when grids deformed to a bound protein conformation were used
instead. In addition, not only can side chain and backbone
movements be accounted for, but in principle any pairwise
scoring functions can be used.

Docking with an Ensemble of Protein Conformations.
While there are a small number of cases where experimental
data from X-ray crystallography or NMR comprise an ensemble
of protein structures (the “receptor ensemble”) with enough
range to fully explore conformational space, computational
ensembles from molecular dynamics are most often used for
generating protein ensembles adequate for lead docking. The
caveats and limitations on MD described above must be
considered. In particular, the scale of movement in the ensemble
must be monitored to ensure that it is consistent with the struc-
tural diversity of ligands to be docked. This method of docking
the set of ligands into all derived discrete conformations of the
receptor is termed “ensemble docking”.117

In the most simplistic variant, ensemble docking calculations
are carried out sequentially for one protein conformer after the
other, which multiplies the required calculation time by the
number of considered conformers. Alternatively, the protein
conformers may be combined to an average representation,
which is relatively straightforward with grid-based docking
methods; i.e., combine two or more sets of grid maps from an
ensemble of different conformations of the target. Two ways
of combining these grid maps, an energy-weighted average and
a geometric-weighted average of the interaction energy between
the ligand and the receptor, were described by Knegtel et al.141

These and three other methods of combining maps, simple mean,
grid point minima, and simple Boltzmann-weighted average of
the interaction energies, were evaluated, and the Boltzmann-
weighted average was shown to be best able to model both
variations in conformation of the very plastic HIV-1 protease
and the presence or absence of structural water molecules.35

One considerable advantage of combining many different
conformations of a target protein into a single grid is compu-
tational speed as compared to individual docking to multiple
targets. There are, however, pitfalls to this approach: (i) there
are limits with respect to the tolerated structural differences
among the conformers being averaged; (ii) the average/
composite structure as represented by the grid may not be a
physically “real” target, and the danger exists that “artificial”
ligand poses are generated that are reasonable only for the
averaged representation. As a further variant, there is an “in
situ cross-docking” approach where multiple protein structures
can be addressed simultaneously in a single (grid-based) docking
run.116,142,143 Although conceptually simple, in situ cross-
docking can lead to significant speedup over conventional serial
cross-docking approaches, and the simultaneous optimization
across multiple protein structures allows for a more direct
selection of the optimal binding site. The method can be applied
simultaneously to proteins with a wide range of structures, but
there are limitations in the number of structures that can be
examined in each calculation.

Given this evidence, does it actually make sense to address
issues of flexibility and induced fit by analyzing a set of
pregenerated protein conformations? One can think of induced
fit as a process of preferential selection of conformations and

Figure 7. Adaptive nature of the protein-protein interface of the
cytokine interleukin-2. (a) Overlay of the unbound (red) (PDB code
1M47) and bound (green) (PDB code 1M48) protein structure of IL-2
together with a small molecule (cyan) that buries into a groove not
seen in the free structure of IL-2. Residue Phe42, whose resultant
movement after small molecule binding opens the groove, is depicted
in stick representation. (b) Overlay of the protein-protein interface
region (opaque sticks) of IL-2 in unbound (red) and bound (green) form.
In addition, a snapshot from a FRODA simulation started from the
unbound state is shown (yellow), which demonstrates that the movement
of Phe42 can even be observed in the absence of the ligand, leading to
a transient pocket opening. Interestingly, regions for which no move-
ment was observed by experiment (around Glu60 and Ala106) also
remain immobile during the simulation (Pfleger, Metz, Kopitz, and
Gohlke, unpublished results).
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corresponding shifts of equilibria.144,145 In this view, states with
an appropriately formed binding pocket, which in the absence
of a ligand may be very weakly populated, are preferentially
selected by the corresponding ligand because it stabilizes those
states, resulting in a net gain in free energy compared to other
protein conformations in the ensemble. The conformational
equilibrium is thus shifted toward the binding-competent
conformations, and those conformational states become pre-
dominant and experimentally observable. Consequently, using
pregenerated protein conformations to deal with protein flex-
ibility appears reasonable, at least in principle. With access to
the entire ensemble of low-energy protein conformers and to a
reliable free energy function for calculating the affinity based
on the protein-ligand interactions and the conformational
contributions from the protein, predictions of the preferred
geometry of the complex should then reduce to a “simple”
optimization task. Unfortunately, neither of the two conditions
are met in reality, as there is almost never access to a complete
(or even sufficiently representative) ensemble of protein con-
formers, and current free energy functions used in docking are
not sufficiently reliable to provide accurate scores for alternative
binding modes for different protein conformers (especially if
the free energy differences are small and/or dominated by
entropic contributions). Accordingly, the success of induced fit
docking with a structural ensemble of conformers is often limited
to cases where the available protein conformers from complexes
with particular ligands are indeed (and likely by chance)
representative for the complexed state. This most often occurs
when the ligands being investigated are similar to the ligands
in the structural models comprising the ensemble. Also, the
energetics must be such that the scoring function is competent
to discriminate between alternative binding modes.

A pioneering development in modeling protein flexibility for
docking calculations using MD to generate the conformation
ensemble is the relaxed complex method from the work of
McCammon et al.68-70 In this approach, molecular dynamics
simulations of the targets are performed prior to docking and
different conformations are selected; the simplest is to choose
conformations at regular time intervals, but it is also possible
to select the most structurally diverse conformations from all
conformations generated. It is then a matter of docking the ligand
of interest to each of these different “snapshots” from the
molecular dynamics trajectory. At the end, a histogram of
binding energies and one or more different binding modes are
obtained. This approach, using AutoDock as the docking engine,
is credited with the discovery of a novel binding trench in HIV
integrase,71 which laid the groundwork for the development of
the first clinically approved integrase inhibitor raltegravir.146

However, both the success and limits of ensemble docking
can readily be illustrated with an example from the well-
characterized aldose reductase system, an enzyme showing
pronounced conformational adaptations upon ligand binding.147

On the basis of dozens of high-resolution crystal structures and

extensive molecular dynamics simulations, detailed knowledge
of the binding site conformations is available.148-150 The binding
pocket is characterized by a very stable region surrounding the
catalytic site and a highly mobile area close to the “specificity
pocket”. Although very localized, this mobility is mediated by
side chain rotations and a stretch of flexible backbone. Es-
sentially, three different protein conformers (and binding modes)
are observed, with minor variants for two of the three major
conformers. One of the conformers has to date only been
observed in complex with the inhibitor tolrestat (1), thus
representing a unique binding mode (Figure 8). Two recently
synthesized tolrestat analogues (2, 3) with high affinity151,152

were investigated to ascertain whether they adopted a similar
binding mode. While docking of tolrestat to all three aldose
reductase conformers correctly reproduced its binding mode in
the open specificity pocket, docking of 2 and 3 predicted
preferred binding to a conformer with a closed specificity pocket,
which was confirmed by subsequent crystallographic analysis.
Interestingly, the actual binding mode of 3 is very similar to
the docking prediction, but compound 2 shows a hitherto
unobserved binding mode with an entirely new conformation
of the aldose reductase binding site not involving the specificity
pocket (Figure 9)! This new conformation features the unex-
pected opening of a salt bridge involving a lysine side chain
that is not obviously compensated by a new protein-ligand
contact. While this broken salt bridge likely explains the failure
to properly dock 2 in aldose reductase even with explicit side
chain flexibility, more importantly, this brings into focus the
larger reality that, even with supposedly well-characterized
systems like aldose reductase, new binding modes are possible
and one can never be certain that a precalculated ensemble has
exhaustively explored flexibility.

A slightly different approach was illustrated in a recent study
carried out by Orozco and co-workers153 on p38 MAP kinase,

Figure 8. Significantly different binding-site conformations are induced in aldose reductase upon binding of the inhibitors tolrestat (1) and analogues
(2, 3).

Figure 9. The complex of aldose reductase with 2 (blue) shows an
unexpected conformational change in the binding site compared to the
standard conformation previously observed (green). The side chain of
Trp20 is rotated by 35°, and more importantly, the salt bridge between
the side chain of Lys21 and the NADP+ cofactor is broken.
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a serine/threonine kinase involved in major signal transduction
pathways and a key factor in the modulation of the level of
tumor necrosis factor-R. This study was designed to understand
the binding of a new pyridinyl-heterocycle family of inhibitors
and is a very relevant example of combining results from X-ray
crystallography, homology modeling, quantum chemistry, clas-
sical docking, and molecular dynamics. Figure 10a illustrates
the four potential binding modes of one member of this series,
4, a lead compound with excellent inhibitory activity (161
nM)153,154 that is presumed to bind at the ATP binding site of
p38 MAP kinase. While a crystal structure for the MAP kinase
complex with 4 is not available, even one at relatively high
resolution would not necessarily resolve these four cases.153

First, a high-level ab initio study of the N1-H/N2-H tautom-
erism in the pyrazolopyridine group suggested that the N1-H
model (see Figure 10a) is energetically favored over the N2-H
model. Docking analysis suggested two binding modes (Figure
10a, top and bottom row) with fairly minor differences in
protein-ligand interactions. The two modes and two tautomers
were thus subjected to 2 ns MD simulations where monitoring
of the rmsd of 4 from the binding site, the ligand-protein
interaction energy, and the key hydrogen bond between the
pyridine nitrogen and the amino group of Met109 clearly favors
the first binding mode (and N1-H) as illustrated in Figure 10b.
This approach was also able to quantify the interactions of each
protein residue with X (see Figure 10c).

Summary and Perspectives

The history of developments in computer-aided drug discov-
ery (CADD) was recently reviewed by John Van Drie155 in the

context of the Bezdek curve showing the progression of the
technology from “naive euphoria” to “peak of hype” through
the “depths of cynicism” to “true user benefits” approaching
the “asymptote of reality”. The current environment in CADD
is an apparently healthy mixture of multiple paradigms, each
having gone through the hype and cynicism phases and
rebounded with their somewhat diminished cadre of true
believers to being generally beneficial. The technologies with
long-term benefit are generally those that have adapted by
adding value from complementary techniques, much as com-
binatorial synthesis has found a niche by becoming target-
specific. In a similar way, structure-based drug design has
matured by taking advantage of emerging technologies over the
years. It is not certain whether the first protein crystallographers,
who were generally physicists, were thinking about SBDD as
they were painstakingly collecting and processing their data.
Certainly, however, it was only a few short years before the
enormous potential of understanding biology through structure
emerged.1,156,157 Currently, through the structural biology
consortia and their high-throughput crystallography, there is an
explosion of data available as targets, but the functions of some
of these new proteins remain poorly understood. This is another
challenge not in the scope of this Perspective. An emerging
development that we do expect to have a profound impact on
SBDD is the consideration of target flexibility as part of the
design process. We have reviewed above many of the experi-
mental and computational approaches that are currently in use
or under development. We offer here some perspectives on what
still needs to be accomplished and the resulting benefits of

Figure 10. Determination of the binding mode of a pyridinyl-heterocycle inhibitor binding to p38 MAP kinase. (a) Four possible binding modes
of compound 4 corresponding to the two possible tautomers (N1-H (upper left) and N2-H (upper right)) and their respective pseudosymmetric
arrangements arising from a 180° rotation around the pyridine-pyrazolopyridine axis (bottom). For clarity, the central core of the molecule is
marked in all cases and key residues defining the binding pocket are displayed as reference. (b) Detail of the optimum binding mode for compound
4 derived from MD simulations. Significant interactions, including a water bridge between 4 and Lys53, are shown. (c) Interaction profile in
kcal/mol for the sum of electrostatic and van der Waals energy for the residues of p38R MAP kinase and compound 4. Key residues for binding
are noted. (Adapted from ref 153.)
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incorporating flexibility as a key component in drug discovery
methodology.

First and foremost, there is the need for more and better
quality experimental data on flexibility of protein systems.
Indeed, this is a major challenge for both X-ray crystallography
and NMR spectroscopy. Two barriers exist: (a) The first barrier
is time resolution. NMR is able to resolve rapid small scale
motions and with isotope exchange very slow vibrations, and
X-ray crystallography, while it clearly cannot deal with large
motions within a single crystal, can detect with synchrotron
radiation some high frequency vibrations. Nonetheless these are
lengthy, complex, and sometimes expensive experiments. (b)
The second barrier is structure resolution. The introduction of
very high field magnets (up to 22 T) and the development of
cryoprobes coupled with innovations in data processing have
improved considerably the NMR resolution power; however,
molecular size is still the major limitation (50-60 kDa is
currently considered the limit for obtaining high resolution
structures). Operating at very low temperature, thus dampening
the vibrational motion, has been a major breakthrough for X-ray
crystallography. However a consideration often lost in this regard
is that free energies of association and binding are measured at
room temperature or higher and the biological processes that are
being simulated occur at biological temperature, while high-
resolution crystallography is routinely performed at around liquid
nitrogen temperature. This disconnect has not been fully resolved,
but it is interesting to note that at Very high resolutions alternative
conformations for labile residues can be observed in X-ray
structures, suggesting that rapidly freezing crystals do preserve
some flexibility information.

In the absence of extensive experimental data, the technology
that will make the largest impact on understanding and
exploiting flexibility is molecular dynamics simulations. While
MD is almost ubiquitously available, there are a number of
issues regarding its widespread usage that suggest some degree
of caution (vide supra). However, over the next few years, MD
will very likely become even more accessible, and hopefully
many of these issues will become transparent even to the less
experienced users. But looking past implementation issues, there
is probably inadequate evidence that MD simulations are truly
representative of molecular motions, i.e., are following real
paths, especially for large and complex molecules, even if the
sampled conformations do appear to represent realistic local
minima. Conventional MD single trajectory simulation is usually
not able to reproduce large conformational changes because of
time scale limitations; the application of multiple-trajectory or
replica exchange methods158 may lead to a better exploration
of conformational space. Combining coarse-grained sampling
to identify large motions with fine-scaled sampling methods to
more accurately probe local transitions and energetics is another
solution. However, there is absolutely no guarantee that submit-
ting an unliganded (apo) structure to long MD simulations (of
any type or combination of types) will generate conformations
suitable for docking a set of ligands. While both protein (and
ligands) undergo significant conformational adjustments upon
binding, those motions are only a very small fraction of the
motions simulated by MD. Ligand-induced MD, where the
simulation is performed in the presence of a ligand, may
represent a possible solution, but the protein conformations thus
generated will be greatly affected by the structure of that
particular molecule. Identifying and focusing on the molecular
motions truly critical to ligand binding and subsequent docking
may end up in the same place as docking algorithms incorporat-
ing local flexibility but from the opposite direction. To expand

this notion, we believe that the best way to identify correctly
docked ligand and receptor residue conformations is in proper
estimation of the free energy of binding and not necessarily on
suitable overlap with reference crystal structures.110 Docking a
ligand against an ensemble of protein models and normalizing
the resulting set of binding energy predictions with Boltzmann
statistics, including improved evaluation of solvent effects, are
likely to be an upcoming evolutionary development in free
energy scoring functions. One approach to this problem that
dramatically illustrates the difficulties of scoring is the com-
putational titration method that simultaneously optimizes pro-
tonation, solvent conformation, and hydrogen bonding for
ligand-protein complexes while calculating a Boltzmann-
weighted free energy score for the ensemble.159,160 At present
this is applied only to static structures where the resulting
ensemble is isocrystallographic.160 The multiple protein structure
method of Carlson65 and developments in ensemble docking
also may reveal new technology in scoring functions.116,117,161-163

To conclude, perhaps the major challenge for most practi-
tioners of drug discovery is that modeling flexibility requires a
change in mind-set. The comforting idea that there is one ligand
perfectly adapted for one static protein “structure” is outdated.
Even the approach of searching through an ensemble of
conformations to find one matching and accommodating the
ligand of interest is an inexact approximation of biological
reality even though it is pragmatic and successful. It is also the
current state of the art. However, the future may provide us
with tools able to visualize and score flexible biological
molecules even as they move and change conformation. The
ability to accurately predict the free energy of binding for
proposed protein-ligand complexes remains an unresolved
problem. However, the recent work of Gilson and co-workers
in characterizing the binding in host-guest complexes164,165 and
the extension to ligand-protein complexes166 is providing
invaluable information for designing new methods of estimating
the free energy of binding. Scoring functions for docking and
virtual screening have recently been reviewed.96 Certainly, the
additional dimension of protein flexibility, whether it arises from
localized site adaptations or from an ensemble of test conforma-
tions, further complicates the development of reliable scoring
functions. Enthusiasm for expanding the set of conformations
in creating more exhaustive ensembles must be tempered with
reality in that the conformations must be energetically accessible
and meaningful, which of course reiterates the need for more
experimental data on flexibility in biomacromolecules. The right
solution, as always, resides in a real understanding of the
biological system of interest, which allows us to use the proper
tools. Thus, the benefits of including flexibility in docking
studies that were illustrated in the sample cases above were large
for systems where extensive experimental data was available.
Much of this work has been performed with paradigms,
algorithms, and software that are still at the cutting edge and
definitely not mainstream. However, as with most developments
in CADD, once the technology is proven and the market
assessed, turnkey systems will start becoming available. Clearly,
virtual screening campaigns that incorporate more target flex-
ibility will identify more putative ligands worthy of closer
examination than those with a single static target but will also,
unfortunately, probably generate more false positives.60,167 New
virtual screening approaches will certainly emerge, probably
using an efficient hybridization of static, averaged, and ensemble
targets. Because recent innovations in experimental and com-
putational biology and medicinal chemistry have now coalesced
around flexibility and dynamics of structure, the authors have
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collaborated in producing this consensus Perspective. We are,
despite the remaining hurdles, very enthusiastic about the future
of drug discovery in the upcoming “flexibility era” and look
forward to the innovations that will arise as this paradigm takes
root in the broader drug discovery community.
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